152 research outputs found

    Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    Full text link
    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp) triplet P^o_J (J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.Comment: 13 pages, 9 table

    Increased Sensitivity to Possible Muonium to Antimuonium Conversion

    Get PDF
    A new experimental search for muonium-antimuonium conversion was conducted at the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis yielded one event fulfilling all required criteria at an expected background of 1.7(2) events due to accidental coincidences. An upper limit for the conversion probability in 0.1 T magnetic field is extracted as 810118 \cdot 10^{-11} (90% CL).Comment: 2 figure

    Test of CPT and Lorentz invariance from muonium spectroscopy

    Get PDF
    Following a suggestion of Kostelecky et al. we have evaluated a test of CPT and Lorentz invariance from the microwave spectroscopy of muonium. Hamiltonian terms beyond the standard model violating CPT and Lorentz invariance would contribute frequency shifts δν12\delta\nu_{12} and δν34\delta\nu_{34} to ν12\nu_{12} and ν34\nu_{34}, the two transitions involving muon spin flip, which were precisely measured in ground state muonium in a strong magnetic field of 1.7 T. The shifts would be indicated by anti-correlated oscillations in ν12\nu_{12} and ν34\nu_{34} at the earth's sidereal frequency. No time dependence was found in ν12\nu_{12} or ν34\nu_{34} at the level of 20 Hz, limiting the size of some CPT and Lorentz violating parameters at the level of 2×10232\times10^{-23} GeV, representing Planck scale sensitivity and an order of magnitude improvement in sensitivity over previous limits for the muon.Comment: 4 pages, 4 figures, uses REVTeX and epsf, submitted to Phys. Rev. Let

    Measurement of the 1s-2s energy interval in muonium

    Get PDF
    The 1s-2s interval has been measured in the muonium ({μ+e\mu^+e^-}) atom by Doppler-free two-photon laser spectroscopy. The frequency separation of the states was determined to be 2 455 528 941.0(9.8)~MHz in good agreement with quantum electrodynamics. The muon-electron mass ratio can be extracted and is found to be 206.768 38(17). The result may be interpreted as measurement of the muon-electron charge ratio as 11.1(2.1)109-1- 1.1(2.1)\cdot 10^{-9}

    The Muon Anomalous Magnetic Moment and the Standard Model

    Full text link
    The muon anomalous magnetic moment measurement, when compared with theory, can be used to test many extensions to the standard model. The most recent measurement made by the Brookhaven E821 Collaboration reduces the uncertainty on the world average of a_mu to 0.7 ppm, comparable in precision to theory. This paper describes the experiment and the current theoretical efforts to establish a correct standard model reference value for the muon anomaly.Comment: Plenary Talk; PANIC'02 XVI Particles and Nuclear International Conference, Osaka, Japan; Sept. 30 - Oct. 4, 2002; Report describes the published 0.7 ppm result and updates the theory statu

    Search for Lorentz and CPT Violation Effects in Muon Spin Precession

    Full text link
    The spin precession frequency of muons stored in the (g2)(g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero Δωa\Delta\omega_{a} (=ωaμ+ωaμ\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}); and a sidereal variation of ωaμ±\omega_{a}^{\mu^{\pm}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ=(1.0±1.1)×1023b_{Z} =-(1.0 \pm 1.1)\times 10^{-23} GeV; (mμdZ0+HXY)=(1.8±6.0×1023)(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23}) GeV; and the 95% confidence level limits bˇμ+<1.4×1024\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24} GeV and bˇμ<2.6×1024\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24} GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestion

    Search for Lorentz and CPT Violation Effects in Muon Spin Precession

    Full text link
    The spin precession frequency of muons stored in the (g2)(g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero Δωa\Delta\omega_{a} (=ωaμ+ωaμ\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}); and a sidereal variation of ωaμ±\omega_{a}^{\mu^{\pm}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ=(1.0±1.1)×1023b_{Z} =-(1.0 \pm 1.1)\times 10^{-23} GeV; (mμdZ0+HXY)=(1.8±6.0×1023)(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23}) GeV; and the 95% confidence level limits bˇμ+<1.4×1024\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24} GeV and bˇμ<2.6×1024\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24} GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestion

    An Improved Limit on the Muon Electric Dipole Moment

    Get PDF
    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muon, as well as the combined result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table

    News from the Muon (g-2) Experiment at BNL

    Get PDF
    The magnetic moment anomaly a_mu = (g_mu - 2) / 2 of the positive muon has been measured at the Brookhaven Alternating Gradient Synchrotron with an uncertainty of 0.7 ppm. The new result, based on data taken in 2000, agrees well with previous measurements. Standard Model evaluations currently differ from the experimental result by 1.6 to 3.0 standard deviations.Comment: Talk presented at RADCOR - Loops and Legs 2002, Kloster Banz, Germany, September 8-13 2002, to be published in Nuclear Physics B (Proc. Suppl.); 5 pages, 3 figure
    corecore